Metamath Proof Explorer


Theorem mnfxr

Description: Minus infinity belongs to the set of extended reals. (Contributed by NM, 13-Oct-2005) (Proof shortened by Anthony Hart, 29-Aug-2011) (Proof shortened by Andrew Salmon, 19-Nov-2011)

Ref Expression
Assertion mnfxr −∞ *

Proof

Step Hyp Ref Expression
1 df-mnf −∞ = 𝒫 +∞
2 pnfex +∞ V
3 2 pwex 𝒫 +∞ V
4 1 3 eqeltri −∞ V
5 4 prid2 −∞ +∞ −∞
6 elun2 −∞ +∞ −∞ −∞ +∞ −∞
7 5 6 ax-mp −∞ +∞ −∞
8 df-xr * = +∞ −∞
9 7 8 eleqtrri −∞ *