Metamath Proof Explorer


Theorem mo

Description: Equivalent definitions of "there exists at most one". (Contributed by NM, 7-Aug-1994) (Revised by Mario Carneiro, 7-Oct-2016) (Proof shortened by Wolf Lammen, 2-Dec-2018)

Ref Expression
Hypothesis mo.nf y φ
Assertion mo y x φ x = y x y φ y x φ x = y

Proof

Step Hyp Ref Expression
1 mo.nf y φ
2 1 mof * x φ y x φ x = y
3 1 mo3 * x φ x y φ y x φ x = y
4 2 3 bitr3i y x φ x = y x y φ y x φ x = y