Metamath Proof Explorer


Theorem mo0sn

Description: Two ways of expressing "at most one" element in a class. (Contributed by Zhi Wang, 19-Sep-2024)

Ref Expression
Assertion mo0sn * x x A A = y A = y

Proof

Step Hyp Ref Expression
1 nfv z x A
2 nfv x z A
3 eleq1w x = z x A z A
4 1 2 3 cbvmow * x x A * z z A
5 neq0 ¬ A = z z A
6 5 anbi1i ¬ A = * z z A z z A * z z A
7 df-eu ∃! z z A z z A * z z A
8 eu6 ∃! z z A y z z A z = y
9 6 7 8 3bitr2i ¬ A = * z z A y z z A z = y
10 dfcleq A = y z z A z y
11 velsn z y z = y
12 11 bibi2i z A z y z A z = y
13 12 albii z z A z y z z A z = y
14 10 13 sylbbr z z A z = y A = y
15 14 eximi y z z A z = y y A = y
16 9 15 sylbi ¬ A = * z z A y A = y
17 16 expcom * z z A ¬ A = y A = y
18 17 orrd * z z A A = y A = y
19 mo0 A = * z z A
20 mosn A = y * z z A
21 20 exlimiv y A = y * z z A
22 19 21 jaoi A = y A = y * z z A
23 18 22 impbii * z z A A = y A = y
24 4 23 bitri * x x A A = y A = y