Metamath Proof Explorer


Theorem mo2icl

Description: Theorem for inferring "at most one". (Contributed by NM, 17-Oct-1996)

Ref Expression
Assertion mo2icl x φ x = A * x φ

Proof

Step Hyp Ref Expression
1 eqeq2 y = A x = y x = A
2 1 imbi2d y = A φ x = y φ x = A
3 2 albidv y = A x φ x = y x φ x = A
4 3 imbi1d y = A x φ x = y * x φ x φ x = A * x φ
5 equequ2 y = z x = y x = z
6 5 imbi2d y = z φ x = y φ x = z
7 6 albidv y = z x φ x = y x φ x = z
8 7 19.8aw x φ x = y y x φ x = y
9 df-mo * x φ y x φ x = y
10 8 9 sylibr x φ x = y * x φ
11 4 10 vtoclg A V x φ x = A * x φ
12 eqvisset x = A A V
13 12 imim2i φ x = A φ A V
14 13 con3rr3 ¬ A V φ x = A ¬ φ
15 14 alimdv ¬ A V x φ x = A x ¬ φ
16 alnex x ¬ φ ¬ x φ
17 nexmo ¬ x φ * x φ
18 16 17 sylbi x ¬ φ * x φ
19 15 18 syl6 ¬ A V x φ x = A * x φ
20 11 19 pm2.61i x φ x = A * x φ