Description: At-most-one quantifier expressed using implicit substitution. This theorem is also a direct consequence of mo4f , but this proof is based on fewer axioms.
By the way, swapping x , y and ph , ps leads to an expression for E* y ps , which is equivalent to E* x ph (is a proof line), so the right hand side is a rare instance of an expression where swapping the quantifiers can be done without ax-11 . (Contributed by NM, 26-Jul-1995) Reduce axiom usage. (Revised by Wolf Lammen, 18-Oct-2023)
Ref | Expression | ||
---|---|---|---|
Hypothesis | mo4.1 | ||
Assertion | mo4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mo4.1 | ||
2 | df-mo | ||
3 | equequ1 | ||
4 | 1 3 | imbi12d | |
5 | 4 | cbvalvw | |
6 | 5 | biimpi | |
7 | pm2.27 | ||
8 | 7 | adantr | |
9 | pm2.27 | ||
10 | 9 | adantl | |
11 | 8 10 | anim12d | |
12 | equtr2 | ||
13 | 11 12 | syl6com | |
14 | 13 | ex | |
15 | 14 | alimdv | |
16 | 15 | com12 | |
17 | 16 | alimdv | |
18 | 6 17 | mpcom | |
19 | 18 | exlimiv | |
20 | 2 19 | sylbi | |
21 | 1 | cbvexvw | |
22 | 21 | biimpri | |
23 | ax6evr | ||
24 | pm3.2 | ||
25 | 24 | imim1d | |
26 | ax7 | ||
27 | 25 26 | syl8 | |
28 | 27 | com4r | |
29 | 28 | impcom | |
30 | 29 | alimdv | |
31 | 30 | impancom | |
32 | 31 | eximdv | |
33 | 23 32 | mpi | |
34 | df-mo | ||
35 | 33 34 | sylibr | |
36 | 35 | expcom | |
37 | 36 | aleximi | |
38 | ax5e | ||
39 | 22 37 38 | syl56 | |
40 | 5 | exbii | |
41 | 40 2 34 | 3bitr4i | |
42 | moabs | ||
43 | 41 42 | bitri | |
44 | 39 43 | sylibr | |
45 | 20 44 | impbii |