Metamath Proof Explorer


Theorem mo4f

Description: At-most-one quantifier expressed using implicit substitution. Note that the disjoint variable condition on y , ph can be replaced by the nonfreeness hypothesis |- F/ y ph with essentially the same proof. (Contributed by NM, 10-Apr-2004) Remove dependency on ax-13 . (Revised by Wolf Lammen, 19-Jan-2023)

Ref Expression
Hypotheses mo4f.1 x ψ
mo4f.2 x = y φ ψ
Assertion mo4f * x φ x y φ ψ x = y

Proof

Step Hyp Ref Expression
1 mo4f.1 x ψ
2 mo4f.2 x = y φ ψ
3 nfv y φ
4 3 mo3 * x φ x y φ y x φ x = y
5 1 2 sbiev y x φ ψ
6 5 anbi2i φ y x φ φ ψ
7 6 imbi1i φ y x φ x = y φ ψ x = y
8 7 2albii x y φ y x φ x = y x y φ ψ x = y
9 4 8 bitri * x φ x y φ ψ x = y