Metamath Proof Explorer


Theorem moabs

Description: Absorption of existence condition by uniqueness. (Contributed by NM, 4-Nov-2002) Shorten proof and avoid df-eu . (Revised by BJ, 14-Oct-2022)

Ref Expression
Assertion moabs * x φ x φ * x φ

Proof

Step Hyp Ref Expression
1 ax-1 * x φ x φ * x φ
2 nexmo ¬ x φ * x φ
3 id * x φ * x φ
4 2 3 ja x φ * x φ * x φ
5 1 4 impbii * x φ x φ * x φ