Metamath Proof Explorer


Theorem moanim

Description: Introduction of a conjunct into "at most one" quantifier. For a version requiring disjoint variables, but fewer axioms, see moanimv . (Contributed by NM, 3-Dec-2001) (Proof shortened by Wolf Lammen, 24-Dec-2018)

Ref Expression
Hypothesis moanim.1 x φ
Assertion moanim * x φ ψ φ * x ψ

Proof

Step Hyp Ref Expression
1 moanim.1 x φ
2 ibar φ ψ φ ψ
3 1 2 mobid φ * x ψ * x φ ψ
4 simpl φ ψ φ
5 1 4 exlimi x φ ψ φ
6 3 5 moanimlem * x φ ψ φ * x ψ