Metamath Proof Explorer


Theorem mob

Description: Equality implied by "at most one". (Contributed by NM, 18-Feb-2006)

Ref Expression
Hypotheses moi.1 x = A φ ψ
moi.2 x = B φ χ
Assertion mob A C B D * x φ ψ A = B χ

Proof

Step Hyp Ref Expression
1 moi.1 x = A φ ψ
2 moi.2 x = B φ χ
3 elex B D B V
4 nfv x B V
5 nfmo1 x * x φ
6 nfv x ψ
7 4 5 6 nf3an x B V * x φ ψ
8 nfv x A = B χ
9 7 8 nfim x B V * x φ ψ A = B χ
10 1 3anbi3d x = A B V * x φ φ B V * x φ ψ
11 eqeq1 x = A x = B A = B
12 11 bibi1d x = A x = B χ A = B χ
13 10 12 imbi12d x = A B V * x φ φ x = B χ B V * x φ ψ A = B χ
14 2 mob2 B V * x φ φ x = B χ
15 9 13 14 vtoclg1f A C B V * x φ ψ A = B χ
16 15 com12 B V * x φ ψ A C A = B χ
17 16 3expib B V * x φ ψ A C A = B χ
18 3 17 syl B D * x φ ψ A C A = B χ
19 18 com3r A C B D * x φ ψ A = B χ
20 19 imp A C B D * x φ ψ A = B χ
21 20 3impib A C B D * x φ ψ A = B χ