Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The universal class
mob2
Next ⟩
moi2
Metamath Proof Explorer
Ascii
Unicode
Theorem
mob2
Description:
Consequence of "at most one".
(Contributed by
NM
, 2-Jan-2015)
Ref
Expression
Hypothesis
moi2.1
⊢
x
=
A
→
φ
↔
ψ
Assertion
mob2
⊢
A
∈
B
∧
∃
*
x
φ
∧
φ
→
x
=
A
↔
ψ
Proof
Step
Hyp
Ref
Expression
1
moi2.1
⊢
x
=
A
→
φ
↔
ψ
2
simp3
⊢
A
∈
B
∧
∃
*
x
φ
∧
φ
→
φ
3
2
1
syl5ibcom
⊢
A
∈
B
∧
∃
*
x
φ
∧
φ
→
x
=
A
→
ψ
4
nfv
⊢
Ⅎ
x
ψ
5
4
1
sbhypf
⊢
y
=
A
→
y
x
φ
↔
ψ
6
5
anbi2d
⊢
y
=
A
→
φ
∧
y
x
φ
↔
φ
∧
ψ
7
eqeq2
⊢
y
=
A
→
x
=
y
↔
x
=
A
8
6
7
imbi12d
⊢
y
=
A
→
φ
∧
y
x
φ
→
x
=
y
↔
φ
∧
ψ
→
x
=
A
9
8
spcgv
⊢
A
∈
B
→
∀
y
φ
∧
y
x
φ
→
x
=
y
→
φ
∧
ψ
→
x
=
A
10
nfs1v
⊢
Ⅎ
x
y
x
φ
11
sbequ12
⊢
x
=
y
→
φ
↔
y
x
φ
12
10
11
mo4f
⊢
∃
*
x
φ
↔
∀
x
∀
y
φ
∧
y
x
φ
→
x
=
y
13
sp
⊢
∀
x
∀
y
φ
∧
y
x
φ
→
x
=
y
→
∀
y
φ
∧
y
x
φ
→
x
=
y
14
12
13
sylbi
⊢
∃
*
x
φ
→
∀
y
φ
∧
y
x
φ
→
x
=
y
15
9
14
impel
⊢
A
∈
B
∧
∃
*
x
φ
→
φ
∧
ψ
→
x
=
A
16
15
expd
⊢
A
∈
B
∧
∃
*
x
φ
→
φ
→
ψ
→
x
=
A
17
16
3impia
⊢
A
∈
B
∧
∃
*
x
φ
∧
φ
→
ψ
→
x
=
A
18
3
17
impbid
⊢
A
∈
B
∧
∃
*
x
φ
∧
φ
→
x
=
A
↔
ψ