Metamath Proof Explorer


Theorem mobi

Description: Equivalence theorem for the at-most-one quantifier. (Contributed by BJ, 7-Oct-2022) (Proof shortened by Wolf Lammen, 18-Feb-2023)

Ref Expression
Assertion mobi x φ ψ * x φ * x ψ

Proof

Step Hyp Ref Expression
1 albiim x φ ψ x φ ψ x ψ φ
2 moim x ψ φ * x φ * x ψ
3 moim x φ ψ * x ψ * x φ
4 2 3 impbid21d x φ ψ x ψ φ * x φ * x ψ
5 4 imp x φ ψ x ψ φ * x φ * x ψ
6 1 5 sylbi x φ ψ * x φ * x ψ