Metamath Proof Explorer


Theorem mobid

Description: Formula-building rule for the at-most-one quantifier (deduction form). (Contributed by NM, 8-Mar-1995) Remove dependency on ax-10 , ax-11 , ax-13 . (Revised by BJ, 14-Oct-2022) (Proof shortened by Wolf Lammen, 18-Feb-2023)

Ref Expression
Hypotheses mobid.1 x φ
mobid.2 φ ψ χ
Assertion mobid φ * x ψ * x χ

Proof

Step Hyp Ref Expression
1 mobid.1 x φ
2 mobid.2 φ ψ χ
3 1 2 alrimi φ x ψ χ
4 mobi x ψ χ * x ψ * x χ
5 3 4 syl φ * x ψ * x χ