Metamath Proof Explorer


Theorem mobidv

Description: Formula-building rule for the at-most-one quantifier (deduction form). (Contributed by Mario Carneiro, 7-Oct-2016) Reduce axiom dependencies and shorten proof. (Revised by BJ, 7-Oct-2022)

Ref Expression
Hypothesis mobidv.1 φ ψ χ
Assertion mobidv φ * x ψ * x χ

Proof

Step Hyp Ref Expression
1 mobidv.1 φ ψ χ
2 1 alrimiv φ x ψ χ
3 mobi x ψ χ * x ψ * x χ
4 2 3 syl φ * x ψ * x χ