Metamath Proof Explorer


Theorem mod2eq0even

Description: An integer is 0 modulo 2 iff it is even (i.e. divisible by 2), see example 2 in ApostolNT p. 107. (Contributed by AV, 21-Jul-2021)

Ref Expression
Assertion mod2eq0even N N mod 2 = 0 2 N

Proof

Step Hyp Ref Expression
1 2nn 2
2 dvdsval3 2 N 2 N N mod 2 = 0
3 1 2 mpan N 2 N N mod 2 = 0
4 3 bicomd N N mod 2 = 0 2 N