Metamath Proof Explorer


Theorem mod2xi

Description: Double exponents in a power mod calculation. (Contributed by Mario Carneiro, 21-Feb-2014)

Ref Expression
Hypotheses modxai.1 N
modxai.2 A
modxai.3 B 0
modxai.4 D
modxai.5 K 0
modxai.6 M 0
mod2xi.9 A B mod N = K mod N
mod2xi.7 2 B = E
mod2xi.8 D N + M = K K
Assertion mod2xi A E mod N = M mod N

Proof

Step Hyp Ref Expression
1 modxai.1 N
2 modxai.2 A
3 modxai.3 B 0
4 modxai.4 D
5 modxai.5 K 0
6 modxai.6 M 0
7 mod2xi.9 A B mod N = K mod N
8 mod2xi.7 2 B = E
9 mod2xi.8 D N + M = K K
10 3 nn0cni B
11 10 2timesi 2 B = B + B
12 11 8 eqtr3i B + B = E
13 1 2 3 4 5 6 3 5 7 7 12 9 modxai A E mod N = M mod N