Database
REAL AND COMPLEX NUMBERS
Elementary integer functions
The modulo (remainder) operation
modabs2
Next ⟩
modcyc
Metamath Proof Explorer
Ascii
Unicode
Theorem
modabs2
Description:
Absorption law for modulo.
(Contributed by
NM
, 29-Dec-2008)
Ref
Expression
Assertion
modabs2
⊢
A
∈
ℝ
∧
B
∈
ℝ
+
→
A
mod
B
mod
B
=
A
mod
B
Proof
Step
Hyp
Ref
Expression
1
rpre
⊢
B
∈
ℝ
+
→
B
∈
ℝ
2
1
leidd
⊢
B
∈
ℝ
+
→
B
≤
B
3
2
adantl
⊢
A
∈
ℝ
∧
B
∈
ℝ
+
→
B
≤
B
4
modabs
⊢
A
∈
ℝ
∧
B
∈
ℝ
+
∧
B
∈
ℝ
+
∧
B
≤
B
→
A
mod
B
mod
B
=
A
mod
B
5
4
ex
⊢
A
∈
ℝ
∧
B
∈
ℝ
+
∧
B
∈
ℝ
+
→
B
≤
B
→
A
mod
B
mod
B
=
A
mod
B
6
5
3anidm23
⊢
A
∈
ℝ
∧
B
∈
ℝ
+
→
B
≤
B
→
A
mod
B
mod
B
=
A
mod
B
7
3
6
mpd
⊢
A
∈
ℝ
∧
B
∈
ℝ
+
→
A
mod
B
mod
B
=
A
mod
B