| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elfzoelz |
|
| 2 |
1
|
zred |
|
| 3 |
2
|
adantr |
|
| 4 |
|
zmodcl |
|
| 5 |
4
|
nn0red |
|
| 6 |
5
|
adantl |
|
| 7 |
3 6
|
readdcld |
|
| 8 |
7
|
ancoms |
|
| 9 |
|
nnrp |
|
| 10 |
9
|
ad2antlr |
|
| 11 |
|
elfzo2 |
|
| 12 |
|
eluz2 |
|
| 13 |
|
nnre |
|
| 14 |
13
|
adantl |
|
| 15 |
14
|
adantl |
|
| 16 |
5
|
adantl |
|
| 17 |
|
zre |
|
| 18 |
17
|
adantr |
|
| 19 |
15 16 18
|
lesubaddd |
|
| 20 |
19
|
biimpd |
|
| 21 |
20
|
impancom |
|
| 22 |
21
|
3adant1 |
|
| 23 |
12 22
|
sylbi |
|
| 24 |
23
|
3ad2ant1 |
|
| 25 |
11 24
|
sylbi |
|
| 26 |
25
|
impcom |
|
| 27 |
|
eluzelz |
|
| 28 |
17 5
|
anim12i |
|
| 29 |
13 13
|
jca |
|
| 30 |
29
|
adantl |
|
| 31 |
30
|
adantl |
|
| 32 |
28 31
|
jca |
|
| 33 |
32
|
adantr |
|
| 34 |
|
simpr |
|
| 35 |
|
zre |
|
| 36 |
|
modlt |
|
| 37 |
35 9 36
|
syl2an |
|
| 38 |
5 14 37
|
ltled |
|
| 39 |
38
|
ad2antlr |
|
| 40 |
34 39
|
jca |
|
| 41 |
|
ltleadd |
|
| 42 |
33 40 41
|
sylc |
|
| 43 |
|
nncn |
|
| 44 |
43
|
2timesd |
|
| 45 |
44
|
adantl |
|
| 46 |
45
|
ad2antlr |
|
| 47 |
42 46
|
breqtrrd |
|
| 48 |
47
|
exp31 |
|
| 49 |
48
|
com23 |
|
| 50 |
27 49
|
syl |
|
| 51 |
50
|
imp |
|
| 52 |
51
|
3adant2 |
|
| 53 |
11 52
|
sylbi |
|
| 54 |
53
|
impcom |
|
| 55 |
|
2submod |
|
| 56 |
55
|
eqcomd |
|
| 57 |
8 10 26 54 56
|
syl22anc |
|
| 58 |
35
|
adantr |
|
| 59 |
58
|
adantr |
|
| 60 |
2
|
adantl |
|
| 61 |
|
modadd2mod |
|
| 62 |
59 60 10 61
|
syl3anc |
|
| 63 |
57 62
|
eqtrd |
|
| 64 |
63
|
ex |
|