Metamath Proof Explorer


Theorem modcl

Description: Closure law for the modulo operation. (Contributed by NM, 10-Nov-2008)

Ref Expression
Assertion modcl A B + A mod B

Proof

Step Hyp Ref Expression
1 modval A B + A mod B = A B A B
2 rpre B + B
3 2 adantl A B + B
4 refldivcl A B + A B
5 3 4 remulcld A B + B A B
6 resubcl A B A B A B A B
7 5 6 syldan A B + A B A B
8 1 7 eqeltrd A B + A mod B