Database
REAL AND COMPLEX NUMBERS
Elementary integer functions
The modulo (remainder) operation
modcl
Next ⟩
flpmodeq
Metamath Proof Explorer
Ascii
Unicode
Theorem
modcl
Description:
Closure law for the modulo operation.
(Contributed by
NM
, 10-Nov-2008)
Ref
Expression
Assertion
modcl
⊢
A
∈
ℝ
∧
B
∈
ℝ
+
→
A
mod
B
∈
ℝ
Proof
Step
Hyp
Ref
Expression
1
modval
⊢
A
∈
ℝ
∧
B
∈
ℝ
+
→
A
mod
B
=
A
−
B
⁢
A
B
2
rpre
⊢
B
∈
ℝ
+
→
B
∈
ℝ
3
2
adantl
⊢
A
∈
ℝ
∧
B
∈
ℝ
+
→
B
∈
ℝ
4
refldivcl
⊢
A
∈
ℝ
∧
B
∈
ℝ
+
→
A
B
∈
ℝ
5
3
4
remulcld
⊢
A
∈
ℝ
∧
B
∈
ℝ
+
→
B
⁢
A
B
∈
ℝ
6
resubcl
⊢
A
∈
ℝ
∧
B
⁢
A
B
∈
ℝ
→
A
−
B
⁢
A
B
∈
ℝ
7
5
6
syldan
⊢
A
∈
ℝ
∧
B
∈
ℝ
+
→
A
−
B
⁢
A
B
∈
ℝ
8
1
7
eqeltrd
⊢
A
∈
ℝ
∧
B
∈
ℝ
+
→
A
mod
B
∈
ℝ