Metamath Proof Explorer


Theorem moddifz

Description: The modulo operation differs from A by an integer multiple of B . (Contributed by Mario Carneiro, 15-Jul-2014)

Ref Expression
Assertion moddifz A B + A A mod B B

Proof

Step Hyp Ref Expression
1 moddiffl A B + A A mod B B = A B
2 rerpdivcl A B + A B
3 2 flcld A B + A B
4 1 3 eqeltrd A B + A A mod B B