Step |
Hyp |
Ref |
Expression |
1 |
|
simp2l |
|
2 |
|
id |
|
3 |
2
|
3adant2l |
|
4 |
|
oveq2 |
|
5 |
4
|
oveq1d |
|
6 |
|
oveq2 |
|
7 |
6
|
oveq1d |
|
8 |
5 7
|
eqeq12d |
|
9 |
8
|
imbi2d |
|
10 |
|
oveq2 |
|
11 |
10
|
oveq1d |
|
12 |
|
oveq2 |
|
13 |
12
|
oveq1d |
|
14 |
11 13
|
eqeq12d |
|
15 |
14
|
imbi2d |
|
16 |
|
oveq2 |
|
17 |
16
|
oveq1d |
|
18 |
|
oveq2 |
|
19 |
18
|
oveq1d |
|
20 |
17 19
|
eqeq12d |
|
21 |
20
|
imbi2d |
|
22 |
|
oveq2 |
|
23 |
22
|
oveq1d |
|
24 |
|
oveq2 |
|
25 |
24
|
oveq1d |
|
26 |
23 25
|
eqeq12d |
|
27 |
26
|
imbi2d |
|
28 |
|
zcn |
|
29 |
|
exp0 |
|
30 |
28 29
|
syl |
|
31 |
|
zcn |
|
32 |
|
exp0 |
|
33 |
31 32
|
syl |
|
34 |
33
|
eqcomd |
|
35 |
30 34
|
sylan9eq |
|
36 |
35
|
oveq1d |
|
37 |
36
|
3ad2ant1 |
|
38 |
|
simp21l |
|
39 |
|
simp1 |
|
40 |
|
zexpcl |
|
41 |
38 39 40
|
syl2anc |
|
42 |
|
simp21r |
|
43 |
|
zexpcl |
|
44 |
42 39 43
|
syl2anc |
|
45 |
|
simp22 |
|
46 |
|
simp3 |
|
47 |
|
simp23 |
|
48 |
41 44 38 42 45 46 47
|
modmul12d |
|
49 |
38
|
zcnd |
|
50 |
|
expp1 |
|
51 |
49 39 50
|
syl2anc |
|
52 |
51
|
oveq1d |
|
53 |
42
|
zcnd |
|
54 |
|
expp1 |
|
55 |
53 39 54
|
syl2anc |
|
56 |
55
|
oveq1d |
|
57 |
48 52 56
|
3eqtr4d |
|
58 |
57
|
3exp |
|
59 |
58
|
a2d |
|
60 |
9 15 21 27 37 59
|
nn0ind |
|
61 |
1 3 60
|
sylc |
|