Step |
Hyp |
Ref |
Expression |
1 |
|
modfsummod.n |
|
2 |
|
modfsummod.1 |
|
3 |
|
modfsummod.2 |
|
4 |
|
raleq |
|
5 |
4
|
anbi1d |
|
6 |
|
sumeq1 |
|
7 |
6
|
oveq1d |
|
8 |
|
sumeq1 |
|
9 |
8
|
oveq1d |
|
10 |
7 9
|
eqeq12d |
|
11 |
5 10
|
imbi12d |
|
12 |
|
raleq |
|
13 |
12
|
anbi1d |
|
14 |
|
sumeq1 |
|
15 |
14
|
oveq1d |
|
16 |
|
sumeq1 |
|
17 |
16
|
oveq1d |
|
18 |
15 17
|
eqeq12d |
|
19 |
13 18
|
imbi12d |
|
20 |
|
raleq |
|
21 |
20
|
anbi1d |
|
22 |
|
sumeq1 |
|
23 |
22
|
oveq1d |
|
24 |
|
sumeq1 |
|
25 |
24
|
oveq1d |
|
26 |
23 25
|
eqeq12d |
|
27 |
21 26
|
imbi12d |
|
28 |
|
raleq |
|
29 |
28
|
anbi1d |
|
30 |
|
sumeq1 |
|
31 |
30
|
oveq1d |
|
32 |
|
sumeq1 |
|
33 |
32
|
oveq1d |
|
34 |
31 33
|
eqeq12d |
|
35 |
29 34
|
imbi12d |
|
36 |
|
sum0 |
|
37 |
36
|
oveq1i |
|
38 |
|
sum0 |
|
39 |
38
|
a1i |
|
40 |
39
|
oveq1d |
|
41 |
37 40
|
eqtr4id |
|
42 |
41
|
adantl |
|
43 |
|
simpll |
|
44 |
|
simplrr |
|
45 |
|
ralun |
|
46 |
45
|
ex |
|
47 |
46
|
ad2antrl |
|
48 |
47
|
imp |
|
49 |
|
modfsummods |
|
50 |
43 44 48 49
|
syl3anc |
|
51 |
50
|
ex |
|
52 |
51
|
com23 |
|
53 |
52
|
ex |
|
54 |
53
|
a2d |
|
55 |
|
ralunb |
|
56 |
55
|
anbi1i |
|
57 |
56
|
imbi1i |
|
58 |
|
an32 |
|
59 |
58
|
imbi1i |
|
60 |
|
impexp |
|
61 |
57 59 60
|
3bitri |
|
62 |
54 61
|
syl6ibr |
|
63 |
11 19 27 35 42 62
|
findcard2 |
|
64 |
2 63
|
syl |
|
65 |
3 1 64
|
mp2and |
|