Step |
Hyp |
Ref |
Expression |
1 |
|
snssi |
|
2 |
|
ssequn1 |
|
3 |
|
uncom |
|
4 |
3
|
eqeq1i |
|
5 |
|
sumeq1 |
|
6 |
5
|
oveq1d |
|
7 |
|
sumeq1 |
|
8 |
7
|
oveq1d |
|
9 |
6 8
|
eqeq12d |
|
10 |
9
|
eqcoms |
|
11 |
4 10
|
sylbi |
|
12 |
11
|
biimpd |
|
13 |
12
|
a1d |
|
14 |
2 13
|
sylbi |
|
15 |
1 14
|
syl |
|
16 |
|
df-nel |
|
17 |
|
simp1 |
|
18 |
17
|
ad2antlr |
|
19 |
|
simpl |
|
20 |
19
|
adantr |
|
21 |
|
vex |
|
22 |
20 21
|
jctil |
|
23 |
|
simplr3 |
|
24 |
|
fsumsplitsnun |
|
25 |
18 22 23 24
|
syl3anc |
|
26 |
25
|
oveq1d |
|
27 |
|
ralunb |
|
28 |
|
simpl |
|
29 |
27 28
|
sylbi |
|
30 |
|
fsumzcl2 |
|
31 |
29 30
|
sylan2 |
|
32 |
31
|
3adant2 |
|
33 |
32
|
adantl |
|
34 |
33
|
zred |
|
35 |
|
modfsummodslem1 |
|
36 |
35
|
3ad2ant3 |
|
37 |
36
|
adantl |
|
38 |
37
|
zred |
|
39 |
|
nnrp |
|
40 |
39
|
3ad2ant2 |
|
41 |
40
|
adantl |
|
42 |
|
modaddabs |
|
43 |
34 38 41 42
|
syl3anc |
|
44 |
43
|
eqcomd |
|
45 |
44
|
adantr |
|
46 |
|
simpr |
|
47 |
35
|
zred |
|
48 |
47
|
3ad2ant3 |
|
49 |
48
|
adantl |
|
50 |
49 41
|
jca |
|
51 |
50
|
adantr |
|
52 |
|
modabs2 |
|
53 |
52
|
eqcomd |
|
54 |
51 53
|
syl |
|
55 |
46 54
|
oveq12d |
|
56 |
55
|
oveq1d |
|
57 |
45 56
|
eqtrd |
|
58 |
|
zmodcl |
|
59 |
58
|
nn0zd |
|
60 |
59
|
expcom |
|
61 |
60
|
ralimdv |
|
62 |
61
|
com12 |
|
63 |
62
|
adantr |
|
64 |
27 63
|
sylbi |
|
65 |
64
|
impcom |
|
66 |
65
|
3adant1 |
|
67 |
17 66
|
jca |
|
68 |
|
fsumzcl2 |
|
69 |
68
|
zred |
|
70 |
67 69
|
syl |
|
71 |
70
|
ad2antlr |
|
72 |
35
|
anim1i |
|
73 |
72
|
ancoms |
|
74 |
|
zmodcl |
|
75 |
73 74
|
syl |
|
76 |
75
|
nn0red |
|
77 |
76
|
3adant1 |
|
78 |
77
|
ad2antlr |
|
79 |
40
|
ad2antlr |
|
80 |
|
modaddabs |
|
81 |
71 78 79 80
|
syl3anc |
|
82 |
60
|
ralimdv |
|
83 |
82
|
imp |
|
84 |
83
|
3adant1 |
|
85 |
84
|
ad2antlr |
|
86 |
|
fsumsplitsnun |
|
87 |
18 22 85 86
|
syl3anc |
|
88 |
|
csbov1g |
|
89 |
21 88
|
mp1i |
|
90 |
89
|
oveq2d |
|
91 |
87 90
|
eqtrd |
|
92 |
91
|
eqcomd |
|
93 |
92
|
oveq1d |
|
94 |
81 93
|
eqtrd |
|
95 |
26 57 94
|
3eqtrd |
|
96 |
95
|
exp31 |
|
97 |
16 96
|
sylbir |
|
98 |
15 97
|
pm2.61i |
|