Database
REAL AND COMPLEX NUMBERS
Elementary integer functions
The modulo (remainder) operation
modge0
Next ⟩
modlt
Metamath Proof Explorer
Ascii
Unicode
Theorem
modge0
Description:
The modulo operation is nonnegative.
(Contributed by
NM
, 10-Nov-2008)
Ref
Expression
Assertion
modge0
⊢
A
∈
ℝ
∧
B
∈
ℝ
+
→
0
≤
A
mod
B
Proof
Step
Hyp
Ref
Expression
1
fldivle
⊢
A
∈
ℝ
∧
B
∈
ℝ
+
→
A
B
≤
A
B
2
refldivcl
⊢
A
∈
ℝ
∧
B
∈
ℝ
+
→
A
B
∈
ℝ
3
simpl
⊢
A
∈
ℝ
∧
B
∈
ℝ
+
→
A
∈
ℝ
4
rpregt0
⊢
B
∈
ℝ
+
→
B
∈
ℝ
∧
0
<
B
5
4
adantl
⊢
A
∈
ℝ
∧
B
∈
ℝ
+
→
B
∈
ℝ
∧
0
<
B
6
lemuldiv2
⊢
A
B
∈
ℝ
∧
A
∈
ℝ
∧
B
∈
ℝ
∧
0
<
B
→
B
⁢
A
B
≤
A
↔
A
B
≤
A
B
7
2
3
5
6
syl3anc
⊢
A
∈
ℝ
∧
B
∈
ℝ
+
→
B
⁢
A
B
≤
A
↔
A
B
≤
A
B
8
1
7
mpbird
⊢
A
∈
ℝ
∧
B
∈
ℝ
+
→
B
⁢
A
B
≤
A
9
rpre
⊢
B
∈
ℝ
+
→
B
∈
ℝ
10
9
adantl
⊢
A
∈
ℝ
∧
B
∈
ℝ
+
→
B
∈
ℝ
11
10
2
remulcld
⊢
A
∈
ℝ
∧
B
∈
ℝ
+
→
B
⁢
A
B
∈
ℝ
12
subge0
⊢
A
∈
ℝ
∧
B
⁢
A
B
∈
ℝ
→
0
≤
A
−
B
⁢
A
B
↔
B
⁢
A
B
≤
A
13
11
12
syldan
⊢
A
∈
ℝ
∧
B
∈
ℝ
+
→
0
≤
A
−
B
⁢
A
B
↔
B
⁢
A
B
≤
A
14
8
13
mpbird
⊢
A
∈
ℝ
∧
B
∈
ℝ
+
→
0
≤
A
−
B
⁢
A
B
15
modval
⊢
A
∈
ℝ
∧
B
∈
ℝ
+
→
A
mod
B
=
A
−
B
⁢
A
B
16
14
15
breqtrrd
⊢
A
∈
ℝ
∧
B
∈
ℝ
+
→
0
≤
A
mod
B