Step |
Hyp |
Ref |
Expression |
1 |
|
modval |
|
2 |
1
|
adantr |
|
3 |
|
rerpdivcl |
|
4 |
3
|
adantr |
|
5 |
4
|
recnd |
|
6 |
|
addid2 |
|
7 |
6
|
fveq2d |
|
8 |
5 7
|
syl |
|
9 |
|
rpregt0 |
|
10 |
|
divge0 |
|
11 |
9 10
|
sylan2 |
|
12 |
11
|
an32s |
|
13 |
12
|
adantrr |
|
14 |
|
simpr |
|
15 |
|
rpcn |
|
16 |
15
|
mulid1d |
|
17 |
16
|
adantr |
|
18 |
14 17
|
breqtrrd |
|
19 |
18
|
ad2ant2l |
|
20 |
|
simpll |
|
21 |
9
|
ad2antlr |
|
22 |
|
1re |
|
23 |
|
ltdivmul |
|
24 |
22 23
|
mp3an2 |
|
25 |
20 21 24
|
syl2anc |
|
26 |
19 25
|
mpbird |
|
27 |
|
0z |
|
28 |
|
flbi2 |
|
29 |
27 4 28
|
sylancr |
|
30 |
13 26 29
|
mpbir2and |
|
31 |
8 30
|
eqtr3d |
|
32 |
31
|
oveq2d |
|
33 |
15
|
mul01d |
|
34 |
33
|
ad2antlr |
|
35 |
32 34
|
eqtrd |
|
36 |
35
|
oveq2d |
|
37 |
|
recn |
|
38 |
37
|
subid1d |
|
39 |
38
|
ad2antrr |
|
40 |
36 39
|
eqtrd |
|
41 |
2 40
|
eqtrd |
|