Metamath Proof Explorer


Theorem modid0

Description: A positive real number modulo itself is 0. (Contributed by Alexander van der Vekens, 15-May-2018)

Ref Expression
Assertion modid0 N + N mod N = 0

Proof

Step Hyp Ref Expression
1 rpcn N + N
2 rpne0 N + N 0
3 1 2 dividd N + N N = 1
4 1z 1
5 3 4 eqeltrdi N + N N
6 rpre N + N
7 mod0 N N + N mod N = 0 N N
8 6 7 mpancom N + N mod N = 0 N N
9 5 8 mpbird N + N mod N = 0