Database
REAL AND COMPLEX NUMBERS
Elementary integer functions
The modulo (remainder) operation
modid2
Next ⟩
zmodid2
Metamath Proof Explorer
Ascii
Unicode
Theorem
modid2
Description:
Identity law for modulo.
(Contributed by
NM
, 29-Dec-2008)
Ref
Expression
Assertion
modid2
⊢
A
∈
ℝ
∧
B
∈
ℝ
+
→
A
mod
B
=
A
↔
0
≤
A
∧
A
<
B
Proof
Step
Hyp
Ref
Expression
1
modge0
⊢
A
∈
ℝ
∧
B
∈
ℝ
+
→
0
≤
A
mod
B
2
modlt
⊢
A
∈
ℝ
∧
B
∈
ℝ
+
→
A
mod
B
<
B
3
1
2
jca
⊢
A
∈
ℝ
∧
B
∈
ℝ
+
→
0
≤
A
mod
B
∧
A
mod
B
<
B
4
breq2
⊢
A
mod
B
=
A
→
0
≤
A
mod
B
↔
0
≤
A
5
breq1
⊢
A
mod
B
=
A
→
A
mod
B
<
B
↔
A
<
B
6
4
5
anbi12d
⊢
A
mod
B
=
A
→
0
≤
A
mod
B
∧
A
mod
B
<
B
↔
0
≤
A
∧
A
<
B
7
3
6
syl5ibcom
⊢
A
∈
ℝ
∧
B
∈
ℝ
+
→
A
mod
B
=
A
→
0
≤
A
∧
A
<
B
8
modid
⊢
A
∈
ℝ
∧
B
∈
ℝ
+
∧
0
≤
A
∧
A
<
B
→
A
mod
B
=
A
9
8
ex
⊢
A
∈
ℝ
∧
B
∈
ℝ
+
→
0
≤
A
∧
A
<
B
→
A
mod
B
=
A
10
7
9
impbid
⊢
A
∈
ℝ
∧
B
∈
ℝ
+
→
A
mod
B
=
A
↔
0
≤
A
∧
A
<
B