Step |
Hyp |
Ref |
Expression |
1 |
|
eldif |
|
2 |
|
modval |
|
3 |
2
|
eqeq1d |
|
4 |
|
recn |
|
5 |
4
|
adantr |
|
6 |
|
rpre |
|
7 |
6
|
adantl |
|
8 |
|
refldivcl |
|
9 |
7 8
|
remulcld |
|
10 |
9
|
recnd |
|
11 |
5 10
|
subeq0ad |
|
12 |
|
rerpdivcl |
|
13 |
|
reflcl |
|
14 |
13
|
recnd |
|
15 |
12 14
|
syl |
|
16 |
|
rpcnne0 |
|
17 |
16
|
adantl |
|
18 |
|
divmul2 |
|
19 |
5 15 17 18
|
syl3anc |
|
20 |
|
eqcom |
|
21 |
19 20
|
bitr3di |
|
22 |
3 11 21
|
3bitrd |
|
23 |
|
flidz |
|
24 |
|
zq |
|
25 |
23 24
|
syl6bi |
|
26 |
12 25
|
syl |
|
27 |
22 26
|
sylbid |
|
28 |
27
|
necon3bd |
|
29 |
28
|
adantld |
|
30 |
1 29
|
syl5bi |
|
31 |
30
|
3impia |
|