Metamath Proof Explorer


Theorem modirr

Description: A number modulo an irrational multiple of it is nonzero. (Contributed by NM, 11-Nov-2008)

Ref Expression
Assertion modirr A B + A B A mod B 0

Proof

Step Hyp Ref Expression
1 eldif A B A B ¬ A B
2 modval A B + A mod B = A B A B
3 2 eqeq1d A B + A mod B = 0 A B A B = 0
4 recn A A
5 4 adantr A B + A
6 rpre B + B
7 6 adantl A B + B
8 refldivcl A B + A B
9 7 8 remulcld A B + B A B
10 9 recnd A B + B A B
11 5 10 subeq0ad A B + A B A B = 0 A = B A B
12 rerpdivcl A B + A B
13 reflcl A B A B
14 13 recnd A B A B
15 12 14 syl A B + A B
16 rpcnne0 B + B B 0
17 16 adantl A B + B B 0
18 divmul2 A A B B B 0 A B = A B A = B A B
19 5 15 17 18 syl3anc A B + A B = A B A = B A B
20 eqcom A B = A B A B = A B
21 19 20 bitr3di A B + A = B A B A B = A B
22 3 11 21 3bitrd A B + A mod B = 0 A B = A B
23 flidz A B A B = A B A B
24 zq A B A B
25 23 24 syl6bi A B A B = A B A B
26 12 25 syl A B + A B = A B A B
27 22 26 sylbid A B + A mod B = 0 A B
28 27 necon3bd A B + ¬ A B A mod B 0
29 28 adantld A B + A B ¬ A B A mod B 0
30 1 29 syl5bi A B + A B A mod B 0
31 30 3impia A B + A B A mod B 0