Metamath Proof Explorer


Theorem modlteq

Description: Two nonnegative integers less than the modulus are equal iff they are equal modulo the modulus. (Contributed by AV, 14-Mar-2021)

Ref Expression
Assertion modlteq I 0 ..^ N J 0 ..^ N I mod N = J mod N I = J

Proof

Step Hyp Ref Expression
1 zmodidfzoimp I 0 ..^ N I mod N = I
2 zmodidfzoimp J 0 ..^ N J mod N = J
3 1 2 eqeqan12d I 0 ..^ N J 0 ..^ N I mod N = J mod N I = J