Step |
Hyp |
Ref |
Expression |
1 |
|
modval |
|
2 |
|
modval |
|
3 |
1 2
|
eqeqan12d |
|
4 |
3
|
anandirs |
|
5 |
4
|
adantrl |
|
6 |
|
oveq1 |
|
7 |
5 6
|
syl6bi |
|
8 |
|
rpcn |
|
9 |
8
|
ad2antll |
|
10 |
|
zcn |
|
11 |
10
|
ad2antrl |
|
12 |
|
rerpdivcl |
|
13 |
12
|
flcld |
|
14 |
13
|
zcnd |
|
15 |
14
|
adantrl |
|
16 |
9 11 15
|
mulassd |
|
17 |
9 11 15
|
mul32d |
|
18 |
16 17
|
eqtr3d |
|
19 |
18
|
oveq2d |
|
20 |
|
recn |
|
21 |
20
|
adantr |
|
22 |
8
|
adantl |
|
23 |
22 14
|
mulcld |
|
24 |
23
|
adantrl |
|
25 |
21 24 11
|
subdird |
|
26 |
19 25
|
eqtr4d |
|
27 |
26
|
adantlr |
|
28 |
8
|
ad2antll |
|
29 |
10
|
ad2antrl |
|
30 |
|
rerpdivcl |
|
31 |
30
|
flcld |
|
32 |
31
|
zcnd |
|
33 |
32
|
adantrl |
|
34 |
28 29 33
|
mulassd |
|
35 |
28 29 33
|
mul32d |
|
36 |
34 35
|
eqtr3d |
|
37 |
36
|
oveq2d |
|
38 |
|
recn |
|
39 |
38
|
adantr |
|
40 |
8
|
adantl |
|
41 |
40 32
|
mulcld |
|
42 |
41
|
adantrl |
|
43 |
39 42 29
|
subdird |
|
44 |
37 43
|
eqtr4d |
|
45 |
44
|
adantll |
|
46 |
27 45
|
eqeq12d |
|
47 |
7 46
|
sylibrd |
|
48 |
|
oveq1 |
|
49 |
|
zre |
|
50 |
|
remulcl |
|
51 |
49 50
|
sylan2 |
|
52 |
51
|
adantrr |
|
53 |
|
simprr |
|
54 |
|
simprl |
|
55 |
13
|
adantrl |
|
56 |
54 55
|
zmulcld |
|
57 |
|
modcyc2 |
|
58 |
52 53 56 57
|
syl3anc |
|
59 |
58
|
adantlr |
|
60 |
|
remulcl |
|
61 |
49 60
|
sylan2 |
|
62 |
61
|
adantrr |
|
63 |
|
simprr |
|
64 |
|
simprl |
|
65 |
31
|
adantrl |
|
66 |
64 65
|
zmulcld |
|
67 |
|
modcyc2 |
|
68 |
62 63 66 67
|
syl3anc |
|
69 |
68
|
adantll |
|
70 |
59 69
|
eqeq12d |
|
71 |
48 70
|
syl5ib |
|
72 |
47 71
|
syld |
|
73 |
72
|
3impia |
|