| Step |
Hyp |
Ref |
Expression |
| 1 |
|
modval |
|
| 2 |
|
modval |
|
| 3 |
1 2
|
eqeqan12d |
|
| 4 |
3
|
anandirs |
|
| 5 |
4
|
adantrl |
|
| 6 |
|
oveq1 |
|
| 7 |
5 6
|
biimtrdi |
|
| 8 |
|
rpcn |
|
| 9 |
8
|
ad2antll |
|
| 10 |
|
zcn |
|
| 11 |
10
|
ad2antrl |
|
| 12 |
|
rerpdivcl |
|
| 13 |
12
|
flcld |
|
| 14 |
13
|
zcnd |
|
| 15 |
14
|
adantrl |
|
| 16 |
9 11 15
|
mulassd |
|
| 17 |
9 11 15
|
mul32d |
|
| 18 |
16 17
|
eqtr3d |
|
| 19 |
18
|
oveq2d |
|
| 20 |
|
recn |
|
| 21 |
20
|
adantr |
|
| 22 |
8
|
adantl |
|
| 23 |
22 14
|
mulcld |
|
| 24 |
23
|
adantrl |
|
| 25 |
21 24 11
|
subdird |
|
| 26 |
19 25
|
eqtr4d |
|
| 27 |
26
|
adantlr |
|
| 28 |
8
|
ad2antll |
|
| 29 |
10
|
ad2antrl |
|
| 30 |
|
rerpdivcl |
|
| 31 |
30
|
flcld |
|
| 32 |
31
|
zcnd |
|
| 33 |
32
|
adantrl |
|
| 34 |
28 29 33
|
mulassd |
|
| 35 |
28 29 33
|
mul32d |
|
| 36 |
34 35
|
eqtr3d |
|
| 37 |
36
|
oveq2d |
|
| 38 |
|
recn |
|
| 39 |
38
|
adantr |
|
| 40 |
8
|
adantl |
|
| 41 |
40 32
|
mulcld |
|
| 42 |
41
|
adantrl |
|
| 43 |
39 42 29
|
subdird |
|
| 44 |
37 43
|
eqtr4d |
|
| 45 |
44
|
adantll |
|
| 46 |
27 45
|
eqeq12d |
|
| 47 |
7 46
|
sylibrd |
|
| 48 |
|
oveq1 |
|
| 49 |
|
zre |
|
| 50 |
|
remulcl |
|
| 51 |
49 50
|
sylan2 |
|
| 52 |
51
|
adantrr |
|
| 53 |
|
simprr |
|
| 54 |
|
simprl |
|
| 55 |
13
|
adantrl |
|
| 56 |
54 55
|
zmulcld |
|
| 57 |
|
modcyc2 |
|
| 58 |
52 53 56 57
|
syl3anc |
|
| 59 |
58
|
adantlr |
|
| 60 |
|
remulcl |
|
| 61 |
49 60
|
sylan2 |
|
| 62 |
61
|
adantrr |
|
| 63 |
|
simprr |
|
| 64 |
|
simprl |
|
| 65 |
31
|
adantrl |
|
| 66 |
64 65
|
zmulcld |
|
| 67 |
|
modcyc2 |
|
| 68 |
62 63 66 67
|
syl3anc |
|
| 69 |
68
|
adantll |
|
| 70 |
59 69
|
eqeq12d |
|
| 71 |
48 70
|
imbitrid |
|
| 72 |
47 71
|
syld |
|
| 73 |
72
|
3impia |
|