Metamath Proof Explorer


Theorem modmul12d

Description: Multiplication property of the modulo operation, see theorem 5.2(b) in ApostolNT p. 107. (Contributed by Mario Carneiro, 5-Feb-2015)

Ref Expression
Hypotheses modmul12d.1 φ A
modmul12d.2 φ B
modmul12d.3 φ C
modmul12d.4 φ D
modmul12d.5 φ E +
modmul12d.6 φ A mod E = B mod E
modmul12d.7 φ C mod E = D mod E
Assertion modmul12d φ A C mod E = B D mod E

Proof

Step Hyp Ref Expression
1 modmul12d.1 φ A
2 modmul12d.2 φ B
3 modmul12d.3 φ C
4 modmul12d.4 φ D
5 modmul12d.5 φ E +
6 modmul12d.6 φ A mod E = B mod E
7 modmul12d.7 φ C mod E = D mod E
8 1 zred φ A
9 2 zred φ B
10 modmul1 A B C E + A mod E = B mod E A C mod E = B C mod E
11 8 9 3 5 6 10 syl221anc φ A C mod E = B C mod E
12 2 zcnd φ B
13 3 zcnd φ C
14 12 13 mulcomd φ B C = C B
15 14 oveq1d φ B C mod E = C B mod E
16 3 zred φ C
17 4 zred φ D
18 modmul1 C D B E + C mod E = D mod E C B mod E = D B mod E
19 16 17 2 5 7 18 syl221anc φ C B mod E = D B mod E
20 4 zcnd φ D
21 20 12 mulcomd φ D B = B D
22 21 oveq1d φ D B mod E = B D mod E
23 15 19 22 3eqtrd φ B C mod E = B D mod E
24 11 23 eqtrd φ A C mod E = B D mod E