Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
|
2 |
1
|
oveq1d |
|
3 |
2
|
eqeq2d |
|
4 |
|
simpr |
|
5 |
4
|
adantr |
|
6 |
|
eqcom |
|
7 |
|
nn0cn |
|
8 |
7
|
adantr |
|
9 |
8
|
ad2antrr |
|
10 |
|
nn0re |
|
11 |
|
modcl |
|
12 |
10 11
|
sylan |
|
13 |
12
|
recnd |
|
14 |
13
|
adantr |
|
15 |
|
eleq1 |
|
16 |
15
|
adantl |
|
17 |
14 16
|
mpbid |
|
18 |
17
|
adantr |
|
19 |
|
zcn |
|
20 |
19
|
adantl |
|
21 |
|
rpcn |
|
22 |
21
|
adantl |
|
23 |
22
|
ad2antrr |
|
24 |
20 23
|
mulcld |
|
25 |
9 18 24
|
subadd2d |
|
26 |
6 25
|
bitr4id |
|
27 |
7
|
ad2antrr |
|
28 |
27 17
|
subcld |
|
29 |
28
|
adantr |
|
30 |
|
rpcnne0 |
|
31 |
30
|
adantl |
|
32 |
31
|
ad2antrr |
|
33 |
|
divmul3 |
|
34 |
29 20 32 33
|
syl3anc |
|
35 |
|
oveq2 |
|
36 |
35
|
oveq1d |
|
37 |
36
|
eqcoms |
|
38 |
37
|
adantl |
|
39 |
38
|
adantr |
|
40 |
|
moddiffl |
|
41 |
10 40
|
sylan |
|
42 |
41
|
ad2antrr |
|
43 |
39 42
|
eqtrd |
|
44 |
43
|
eqeq1d |
|
45 |
26 34 44
|
3bitr2d |
|
46 |
|
nn0ge0 |
|
47 |
10 46
|
jca |
|
48 |
|
rpregt0 |
|
49 |
|
divge0 |
|
50 |
47 48 49
|
syl2an |
|
51 |
10
|
adantr |
|
52 |
|
rpre |
|
53 |
52
|
adantl |
|
54 |
|
rpne0 |
|
55 |
54
|
adantl |
|
56 |
51 53 55
|
redivcld |
|
57 |
|
0z |
|
58 |
|
flge |
|
59 |
56 57 58
|
sylancl |
|
60 |
50 59
|
mpbid |
|
61 |
|
breq2 |
|
62 |
60 61
|
syl5ibcom |
|
63 |
62
|
ad2antrr |
|
64 |
45 63
|
sylbid |
|
65 |
64
|
imp |
|
66 |
|
elnn0z |
|
67 |
5 65 66
|
sylanbrc |
|
68 |
|
simpr |
|
69 |
3 67 68
|
rspcedvdw |
|
70 |
|
nn0z |
|
71 |
|
modmuladdim |
|
72 |
70 71
|
sylan |
|
73 |
72
|
imp |
|
74 |
69 73
|
r19.29a |
|
75 |
74
|
ex |
|