Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
|
2 |
1
|
adantr |
|
3 |
|
eqcom |
|
4 |
|
nn0cn |
|
5 |
4
|
adantr |
|
6 |
5
|
ad2antrr |
|
7 |
|
nn0re |
|
8 |
|
modcl |
|
9 |
7 8
|
sylan |
|
10 |
9
|
recnd |
|
11 |
10
|
adantr |
|
12 |
|
eleq1 |
|
13 |
12
|
adantl |
|
14 |
11 13
|
mpbid |
|
15 |
14
|
adantr |
|
16 |
|
zcn |
|
17 |
16
|
adantl |
|
18 |
|
rpcn |
|
19 |
18
|
adantl |
|
20 |
19
|
ad2antrr |
|
21 |
17 20
|
mulcld |
|
22 |
6 15 21
|
subadd2d |
|
23 |
3 22
|
bitr4id |
|
24 |
4
|
ad2antrr |
|
25 |
24 14
|
subcld |
|
26 |
25
|
adantr |
|
27 |
|
rpcnne0 |
|
28 |
27
|
adantl |
|
29 |
28
|
ad2antrr |
|
30 |
|
divmul3 |
|
31 |
26 17 29 30
|
syl3anc |
|
32 |
|
oveq2 |
|
33 |
32
|
oveq1d |
|
34 |
33
|
eqcoms |
|
35 |
34
|
adantl |
|
36 |
35
|
adantr |
|
37 |
|
moddiffl |
|
38 |
7 37
|
sylan |
|
39 |
38
|
ad2antrr |
|
40 |
36 39
|
eqtrd |
|
41 |
40
|
eqeq1d |
|
42 |
23 31 41
|
3bitr2d |
|
43 |
|
nn0ge0 |
|
44 |
7 43
|
jca |
|
45 |
|
rpregt0 |
|
46 |
|
divge0 |
|
47 |
44 45 46
|
syl2an |
|
48 |
7
|
adantr |
|
49 |
|
rpre |
|
50 |
49
|
adantl |
|
51 |
|
rpne0 |
|
52 |
51
|
adantl |
|
53 |
48 50 52
|
redivcld |
|
54 |
|
0z |
|
55 |
|
flge |
|
56 |
53 54 55
|
sylancl |
|
57 |
47 56
|
mpbid |
|
58 |
|
breq2 |
|
59 |
57 58
|
syl5ibcom |
|
60 |
59
|
ad2antrr |
|
61 |
42 60
|
sylbid |
|
62 |
61
|
imp |
|
63 |
|
elnn0z |
|
64 |
2 62 63
|
sylanbrc |
|
65 |
|
oveq1 |
|
66 |
65
|
oveq1d |
|
67 |
66
|
eqeq2d |
|
68 |
67
|
adantl |
|
69 |
|
simpr |
|
70 |
64 68 69
|
rspcedvd |
|
71 |
|
nn0z |
|
72 |
|
modmuladdim |
|
73 |
71 72
|
sylan |
|
74 |
73
|
imp |
|
75 |
70 74
|
r19.29a |
|
76 |
75
|
ex |
|