Step |
Hyp |
Ref |
Expression |
1 |
|
nnre |
|
2 |
|
reflcl |
|
3 |
|
remulcl |
|
4 |
1 2 3
|
syl2an |
|
5 |
4
|
3adant3 |
|
6 |
|
remulcl |
|
7 |
1 6
|
sylan |
|
8 |
|
reflcl |
|
9 |
7 8
|
syl |
|
10 |
9
|
3adant3 |
|
11 |
|
nnmulcl |
|
12 |
11
|
nnred |
|
13 |
12
|
3adant2 |
|
14 |
|
nncn |
|
15 |
|
nnne0 |
|
16 |
14 15
|
jca |
|
17 |
|
nncn |
|
18 |
|
nnne0 |
|
19 |
17 18
|
jca |
|
20 |
|
mulne0 |
|
21 |
16 19 20
|
syl2an |
|
22 |
21
|
3adant2 |
|
23 |
5 13 22
|
redivcld |
|
24 |
|
reflcl |
|
25 |
23 24
|
syl |
|
26 |
13 25
|
remulcld |
|
27 |
|
nnnn0 |
|
28 |
|
flmulnn0 |
|
29 |
27 28
|
sylan |
|
30 |
29
|
3adant3 |
|
31 |
5 10 26 30
|
lesub1dd |
|
32 |
11
|
nnrpd |
|
33 |
|
modval |
|
34 |
5 32 33
|
3imp3i2an |
|
35 |
|
modval |
|
36 |
10 32 35
|
3imp3i2an |
|
37 |
7
|
3adant3 |
|
38 |
|
fldiv |
|
39 |
37 11 38
|
3imp3i2an |
|
40 |
|
fldiv |
|
41 |
40
|
3adant3 |
|
42 |
2
|
recnd |
|
43 |
|
divcan5 |
|
44 |
42 19 16 43
|
syl3an |
|
45 |
44
|
fveq2d |
|
46 |
|
recn |
|
47 |
|
divcan5 |
|
48 |
46 19 16 47
|
syl3an |
|
49 |
48
|
fveq2d |
|
50 |
41 45 49
|
3eqtr4rd |
|
51 |
50
|
3comr |
|
52 |
39 51
|
eqtrd |
|
53 |
52
|
oveq2d |
|
54 |
53
|
oveq2d |
|
55 |
36 54
|
eqtrd |
|
56 |
31 34 55
|
3brtr4d |
|