Metamath Proof Explorer


Theorem modom

Description: Two ways to express "at most one". (Contributed by Stefan O'Rear, 28-Oct-2014)

Ref Expression
Assertion modom * x φ x | φ 1 𝑜

Proof

Step Hyp Ref Expression
1 moeu * x φ x φ ∃! x φ
2 imor x φ ∃! x φ ¬ x φ ∃! x φ
3 abn0 x | φ x φ
4 3 necon1bbii ¬ x φ x | φ =
5 sdom1 x | φ 1 𝑜 x | φ =
6 4 5 bitr4i ¬ x φ x | φ 1 𝑜
7 euen1 ∃! x φ x | φ 1 𝑜
8 6 7 orbi12i ¬ x φ ∃! x φ x | φ 1 𝑜 x | φ 1 𝑜
9 brdom2 x | φ 1 𝑜 x | φ 1 𝑜 x | φ 1 𝑜
10 8 9 bitr4i ¬ x φ ∃! x φ x | φ 1 𝑜
11 1 2 10 3bitri * x φ x | φ 1 𝑜