Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Finite sets (cont.)
modom
Next ⟩
modom2
Metamath Proof Explorer
Ascii
Unicode
Theorem
modom
Description:
Two ways to express "at most one".
(Contributed by
Stefan O'Rear
, 28-Oct-2014)
Ref
Expression
Assertion
modom
⊢
∃
*
x
φ
↔
x
|
φ
≼
1
𝑜
Proof
Step
Hyp
Ref
Expression
1
moeu
⊢
∃
*
x
φ
↔
∃
x
φ
→
∃!
x
φ
2
imor
⊢
∃
x
φ
→
∃!
x
φ
↔
¬
∃
x
φ
∨
∃!
x
φ
3
abn0
⊢
x
|
φ
≠
∅
↔
∃
x
φ
4
3
necon1bbii
⊢
¬
∃
x
φ
↔
x
|
φ
=
∅
5
sdom1
⊢
x
|
φ
≺
1
𝑜
↔
x
|
φ
=
∅
6
4
5
bitr4i
⊢
¬
∃
x
φ
↔
x
|
φ
≺
1
𝑜
7
euen1
⊢
∃!
x
φ
↔
x
|
φ
≈
1
𝑜
8
6
7
orbi12i
⊢
¬
∃
x
φ
∨
∃!
x
φ
↔
x
|
φ
≺
1
𝑜
∨
x
|
φ
≈
1
𝑜
9
brdom2
⊢
x
|
φ
≼
1
𝑜
↔
x
|
φ
≺
1
𝑜
∨
x
|
φ
≈
1
𝑜
10
8
9
bitr4i
⊢
¬
∃
x
φ
∨
∃!
x
φ
↔
x
|
φ
≼
1
𝑜
11
1
2
10
3bitri
⊢
∃
*
x
φ
↔
x
|
φ
≼
1
𝑜