Step |
Hyp |
Ref |
Expression |
1 |
|
modcl |
|
2 |
1
|
3adant2 |
|
3 |
|
modcl |
|
4 |
3
|
3adant1 |
|
5 |
2 4
|
subge0d |
|
6 |
|
resubcl |
|
7 |
6
|
3adant3 |
|
8 |
|
simp3 |
|
9 |
|
rerpdivcl |
|
10 |
9
|
flcld |
|
11 |
10
|
3adant2 |
|
12 |
|
rerpdivcl |
|
13 |
12
|
flcld |
|
14 |
13
|
3adant1 |
|
15 |
11 14
|
zsubcld |
|
16 |
|
modcyc2 |
|
17 |
7 8 15 16
|
syl3anc |
|
18 |
|
recn |
|
19 |
18
|
3ad2ant1 |
|
20 |
|
recn |
|
21 |
20
|
3ad2ant2 |
|
22 |
|
rpre |
|
23 |
22
|
adantl |
|
24 |
|
refldivcl |
|
25 |
23 24
|
remulcld |
|
26 |
25
|
recnd |
|
27 |
26
|
3adant2 |
|
28 |
22
|
adantl |
|
29 |
|
refldivcl |
|
30 |
28 29
|
remulcld |
|
31 |
30
|
recnd |
|
32 |
31
|
3adant1 |
|
33 |
19 21 27 32
|
sub4d |
|
34 |
22
|
3ad2ant3 |
|
35 |
34
|
recnd |
|
36 |
24
|
recnd |
|
37 |
36
|
3adant2 |
|
38 |
29
|
recnd |
|
39 |
38
|
3adant1 |
|
40 |
35 37 39
|
subdid |
|
41 |
40
|
oveq2d |
|
42 |
|
modval |
|
43 |
42
|
3adant2 |
|
44 |
|
modval |
|
45 |
44
|
3adant1 |
|
46 |
43 45
|
oveq12d |
|
47 |
33 41 46
|
3eqtr4d |
|
48 |
47
|
oveq1d |
|
49 |
17 48
|
eqtr3d |
|
50 |
49
|
adantr |
|
51 |
2 4
|
resubcld |
|
52 |
51
|
adantr |
|
53 |
|
simpl3 |
|
54 |
|
simpr |
|
55 |
|
modge0 |
|
56 |
55
|
3adant1 |
|
57 |
2 4
|
subge02d |
|
58 |
56 57
|
mpbid |
|
59 |
|
modlt |
|
60 |
59
|
3adant2 |
|
61 |
51 2 34 58 60
|
lelttrd |
|
62 |
61
|
adantr |
|
63 |
|
modid |
|
64 |
52 53 54 62 63
|
syl22anc |
|
65 |
50 64
|
eqtrd |
|
66 |
|
modge0 |
|
67 |
6 66
|
stoic3 |
|
68 |
67
|
adantr |
|
69 |
|
simpr |
|
70 |
68 69
|
breqtrd |
|
71 |
65 70
|
impbida |
|
72 |
5 71
|
bitr3d |
|