| Step |
Hyp |
Ref |
Expression |
| 1 |
|
modcl |
|
| 2 |
1
|
3adant2 |
|
| 3 |
|
modcl |
|
| 4 |
3
|
3adant1 |
|
| 5 |
2 4
|
subge0d |
|
| 6 |
|
resubcl |
|
| 7 |
6
|
3adant3 |
|
| 8 |
|
simp3 |
|
| 9 |
|
rerpdivcl |
|
| 10 |
9
|
flcld |
|
| 11 |
10
|
3adant2 |
|
| 12 |
|
rerpdivcl |
|
| 13 |
12
|
flcld |
|
| 14 |
13
|
3adant1 |
|
| 15 |
11 14
|
zsubcld |
|
| 16 |
|
modcyc2 |
|
| 17 |
7 8 15 16
|
syl3anc |
|
| 18 |
|
recn |
|
| 19 |
18
|
3ad2ant1 |
|
| 20 |
|
recn |
|
| 21 |
20
|
3ad2ant2 |
|
| 22 |
|
rpre |
|
| 23 |
22
|
adantl |
|
| 24 |
|
refldivcl |
|
| 25 |
23 24
|
remulcld |
|
| 26 |
25
|
recnd |
|
| 27 |
26
|
3adant2 |
|
| 28 |
22
|
adantl |
|
| 29 |
|
refldivcl |
|
| 30 |
28 29
|
remulcld |
|
| 31 |
30
|
recnd |
|
| 32 |
31
|
3adant1 |
|
| 33 |
19 21 27 32
|
sub4d |
|
| 34 |
22
|
3ad2ant3 |
|
| 35 |
34
|
recnd |
|
| 36 |
24
|
recnd |
|
| 37 |
36
|
3adant2 |
|
| 38 |
29
|
recnd |
|
| 39 |
38
|
3adant1 |
|
| 40 |
35 37 39
|
subdid |
|
| 41 |
40
|
oveq2d |
|
| 42 |
|
modval |
|
| 43 |
42
|
3adant2 |
|
| 44 |
|
modval |
|
| 45 |
44
|
3adant1 |
|
| 46 |
43 45
|
oveq12d |
|
| 47 |
33 41 46
|
3eqtr4d |
|
| 48 |
47
|
oveq1d |
|
| 49 |
17 48
|
eqtr3d |
|
| 50 |
49
|
adantr |
|
| 51 |
2 4
|
resubcld |
|
| 52 |
51
|
adantr |
|
| 53 |
|
simpl3 |
|
| 54 |
|
simpr |
|
| 55 |
|
modge0 |
|
| 56 |
55
|
3adant1 |
|
| 57 |
2 4
|
subge02d |
|
| 58 |
56 57
|
mpbid |
|
| 59 |
|
modlt |
|
| 60 |
59
|
3adant2 |
|
| 61 |
51 2 34 58 60
|
lelttrd |
|
| 62 |
61
|
adantr |
|
| 63 |
|
modid |
|
| 64 |
52 53 54 62 63
|
syl22anc |
|
| 65 |
50 64
|
eqtrd |
|
| 66 |
|
modge0 |
|
| 67 |
6 66
|
stoic3 |
|
| 68 |
67
|
adantr |
|
| 69 |
|
simpr |
|
| 70 |
68 69
|
breqtrd |
|
| 71 |
65 70
|
impbida |
|
| 72 |
5 71
|
bitr3d |
|