Metamath Proof Explorer


Theorem modvalr

Description: The value of the modulo operation (multiplication in reversed order). (Contributed by Alexander van der Vekens, 14-Apr-2018)

Ref Expression
Assertion modvalr A B + A mod B = A A B B

Proof

Step Hyp Ref Expression
1 modval A B + A mod B = A B A B
2 rpcn B + B
3 2 adantl A B + B
4 rerpdivcl A B + A B
5 reflcl A B A B
6 5 recnd A B A B
7 4 6 syl A B + A B
8 3 7 mulcomd A B + B A B = A B B
9 8 oveq2d A B + A B A B = A A B B
10 1 9 eqtrd A B + A mod B = A A B B