Metamath Proof Explorer


Theorem moel

Description: "At most one" element in a set. (Contributed by Thierry Arnoux, 26-Jul-2018) Avoid ax-11 . (Revised by Wolf Lammen, 23-Nov-2024)

Ref Expression
Assertion moel * x x A x A y A x = y

Proof

Step Hyp Ref Expression
1 eleq1w x = y x A y A
2 1 mo4 * x x A x y x A y A x = y
3 r2al x A y A x = y x y x A y A x = y
4 2 3 bitr4i * x x A x A y A x = y