Metamath Proof Explorer


Theorem moeu2

Description: Uniqueness is equivalent to non-existence or unique existence. Alternate definition of the at-most-one quantifier, in terms of the existential quantifier and the unique existential quantifier. (Contributed by Peter Mazsa, 19-Nov-2024)

Ref Expression
Assertion moeu2 * x φ ¬ x φ ∃! x φ

Proof

Step Hyp Ref Expression
1 moeu * x φ x φ ∃! x φ
2 imor x φ ∃! x φ ¬ x φ ∃! x φ
3 1 2 bitri * x φ ¬ x φ ∃! x φ