Metamath Proof Explorer


Theorem moeuex

Description: Uniqueness implies that existence is equivalent to unique existence. (Contributed by BJ, 7-Oct-2022)

Ref Expression
Assertion moeuex * x φ x φ ∃! x φ

Proof

Step Hyp Ref Expression
1 df-eu ∃! x φ x φ * x φ
2 1 rbaibr * x φ x φ ∃! x φ