Metamath Proof Explorer


Theorem mof0

Description: There is at most one function into the empty set. (Contributed by Zhi Wang, 19-Sep-2024)

Ref Expression
Assertion mof0 * f f : A

Proof

Step Hyp Ref Expression
1 0ex V
2 eqeq2 g = f = g f =
3 2 imbi2d g = f : A f = g f : A f =
4 3 albidv g = f f : A f = g f f : A f =
5 1 4 spcev f f : A f = g f f : A f = g
6 f00 f : A f = A =
7 6 simplbi f : A f =
8 5 7 mpg g f f : A f = g
9 df-mo * f f : A g f f : A f = g
10 8 9 mpbir * f f : A