Metamath Proof Explorer


Theorem mof02

Description: A variant of mof0 . (Contributed by Zhi Wang, 20-Sep-2024)

Ref Expression
Assertion mof02 B = * f f : A B

Proof

Step Hyp Ref Expression
1 mof0 * f f : A
2 feq3 B = f : A B f : A
3 2 mobidv B = * f f : A B * f f : A
4 1 3 mpbiri B = * f f : A B