Metamath Proof Explorer


Theorem mof0ALT

Description: Alternate proof for mof0 with stronger requirements on distinct variables. Uses mo4 . (Contributed by Zhi Wang, 19-Sep-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion mof0ALT * f f : A

Proof

Step Hyp Ref Expression
1 f00 f : A f = A =
2 1 simplbi f : A f =
3 f00 g : A g = A =
4 3 simplbi g : A g =
5 eqtr3 f = g = f = g
6 2 4 5 syl2an f : A g : A f = g
7 6 gen2 f g f : A g : A f = g
8 feq1 f = g f : A g : A
9 8 mo4 * f f : A f g f : A g : A f = g
10 7 9 mpbir * f f : A