Metamath Proof Explorer


Theorem mofmo

Description: There is at most one function into a class containing at most one element. (Contributed by Zhi Wang, 19-Sep-2024)

Ref Expression
Assertion mofmo * x x B * f f : A B

Proof

Step Hyp Ref Expression
1 mo0sn * x x B B = y B = y
2 mof02 B = * f f : A B
3 mofsn2 B = y * f f : A B
4 3 exlimiv y B = y * f f : A B
5 2 4 jaoi B = y B = y * f f : A B
6 1 5 sylbi * x x B * f f : A B