Metamath Proof Explorer


Theorem mofsn

Description: There is at most one function into a singleton, with fewer axioms than eufsn and eufsn2 . See also mofsn2 . (Contributed by Zhi Wang, 19-Sep-2024)

Ref Expression
Assertion mofsn B V * f f : A B

Proof

Step Hyp Ref Expression
1 fconst2g B V f : A B f = A × B
2 1 biimpd B V f : A B f = A × B
3 fconst2g B V g : A B g = A × B
4 3 biimpd B V g : A B g = A × B
5 eqtr3 f = A × B g = A × B f = g
6 5 a1i B V f = A × B g = A × B f = g
7 2 4 6 syl2and B V f : A B g : A B f = g
8 7 alrimivv B V f g f : A B g : A B f = g
9 feq1 f = g f : A B g : A B
10 9 mo4 * f f : A B f g f : A B g : A B f = g
11 8 10 sylibr B V * f f : A B