Metamath Proof Explorer


Theorem mofsn2

Description: There is at most one function into a singleton. An unconditional variant of mofsn , i.e., the singleton could be empty if Y is a proper class. (Contributed by Zhi Wang, 19-Sep-2024)

Ref Expression
Assertion mofsn2 B = Y * f f : A B

Proof

Step Hyp Ref Expression
1 mofsn Y V * f f : A Y
2 1 adantl B = Y Y V * f f : A Y
3 feq3 B = Y f : A B f : A Y
4 3 mobidv B = Y * f f : A B * f f : A Y
5 4 adantr B = Y Y V * f f : A B * f f : A Y
6 2 5 mpbird B = Y Y V * f f : A B
7 simpl B = Y ¬ Y V B = Y
8 snprc ¬ Y V Y =
9 8 biimpi ¬ Y V Y =
10 9 adantl B = Y ¬ Y V Y =
11 7 10 eqtrd B = Y ¬ Y V B =
12 mof02 B = * f f : A B
13 11 12 syl B = Y ¬ Y V * f f : A B
14 6 13 pm2.61dan B = Y * f f : A B