Metamath Proof Explorer


Theorem mofsssn

Description: There is at most one function into a subclass of a singleton. (Contributed by Zhi Wang, 24-Sep-2024)

Ref Expression
Assertion mofsssn B Y * f f : A B

Proof

Step Hyp Ref Expression
1 sssn B Y B = B = Y
2 mof02 B = * f f : A B
3 mofsn2 B = Y * f f : A B
4 2 3 jaoi B = B = Y * f f : A B
5 1 4 sylbi B Y * f f : A B