Metamath Proof Explorer


Theorem mogoldbb

Description: If the modern version of the original formulation of the Goldbach conjecture is valid, the (weak) binary Goldbach conjecture also holds. (Contributed by AV, 26-Dec-2021)

Ref Expression
Assertion mogoldbb n 6 p q r n = p + q + r n Even 2 < n p q n = p + q

Proof

Step Hyp Ref Expression
1 nfra1 n n 6 p q r n = p + q + r
2 eqeq1 n = m n = p + q + r m = p + q + r
3 2 rexbidv n = m r n = p + q + r r m = p + q + r
4 3 2rexbidv n = m p q r n = p + q + r p q r m = p + q + r
5 4 cbvralvw n 6 p q r n = p + q + r m 6 p q r m = p + q + r
6 6nn 6
7 6 nnzi 6
8 7 a1i n Even 2 < n 6
9 evenz n Even n
10 2z 2
11 10 a1i n Even 2
12 9 11 zaddcld n Even n + 2
13 12 adantr n Even 2 < n n + 2
14 4cn 4
15 2cn 2
16 4p2e6 4 + 2 = 6
17 16 eqcomi 6 = 4 + 2
18 14 15 17 mvrraddi 6 2 = 4
19 2p2e4 2 + 2 = 4
20 2evenALTV 2 Even
21 evenltle n Even 2 Even 2 < n 2 + 2 n
22 20 21 mp3an2 n Even 2 < n 2 + 2 n
23 19 22 eqbrtrrid n Even 2 < n 4 n
24 18 23 eqbrtrid n Even 2 < n 6 2 n
25 6re 6
26 25 a1i n Even 6
27 2re 2
28 27 a1i n Even 2
29 9 zred n Even n
30 26 28 29 3jca n Even 6 2 n
31 30 adantr n Even 2 < n 6 2 n
32 lesubadd 6 2 n 6 2 n 6 n + 2
33 31 32 syl n Even 2 < n 6 2 n 6 n + 2
34 24 33 mpbid n Even 2 < n 6 n + 2
35 eluz2 n + 2 6 6 n + 2 6 n + 2
36 8 13 34 35 syl3anbrc n Even 2 < n n + 2 6
37 eqeq1 m = n + 2 m = p + q + r n + 2 = p + q + r
38 37 rexbidv m = n + 2 r m = p + q + r r n + 2 = p + q + r
39 38 2rexbidv m = n + 2 p q r m = p + q + r p q r n + 2 = p + q + r
40 39 rspcv n + 2 6 m 6 p q r m = p + q + r p q r n + 2 = p + q + r
41 36 40 syl n Even 2 < n m 6 p q r m = p + q + r p q r n + 2 = p + q + r
42 5 41 syl5bi n Even 2 < n n 6 p q r n = p + q + r p q r n + 2 = p + q + r
43 nfv p n Even 2 < n
44 nfre1 p p q n = p + q
45 nfv q n Even 2 < n p
46 nfcv _ q
47 nfre1 q q n = p + q
48 46 47 nfrex q p q n = p + q
49 simplrl n Even 2 < n p q r p
50 simplrr n Even 2 < n p q r q
51 simpr n Even 2 < n p q r r
52 49 50 51 3jca n Even 2 < n p q r p q r
53 52 adantr n Even 2 < n p q r n + 2 = p + q + r p q r
54 simp-4l n Even 2 < n p q r n + 2 = p + q + r n Even
55 simpr n Even 2 < n p q r n + 2 = p + q + r n + 2 = p + q + r
56 mogoldbblem p q r n Even n + 2 = p + q + r y x n = y + x
57 oveq1 p = y p + q = y + q
58 57 eqeq2d p = y n = p + q n = y + q
59 oveq2 q = x y + q = y + x
60 59 eqeq2d q = x n = y + q n = y + x
61 58 60 cbvrex2vw p q n = p + q y x n = y + x
62 56 61 sylibr p q r n Even n + 2 = p + q + r p q n = p + q
63 53 54 55 62 syl3anc n Even 2 < n p q r n + 2 = p + q + r p q n = p + q
64 63 rexlimdva2 n Even 2 < n p q r n + 2 = p + q + r p q n = p + q
65 64 expr n Even 2 < n p q r n + 2 = p + q + r p q n = p + q
66 45 48 65 rexlimd n Even 2 < n p q r n + 2 = p + q + r p q n = p + q
67 66 ex n Even 2 < n p q r n + 2 = p + q + r p q n = p + q
68 43 44 67 rexlimd n Even 2 < n p q r n + 2 = p + q + r p q n = p + q
69 42 68 syldc n 6 p q r n = p + q + r n Even 2 < n p q n = p + q
70 69 expd n 6 p q r n = p + q + r n Even 2 < n p q n = p + q
71 1 70 ralrimi n 6 p q r n = p + q + r n Even 2 < n p q n = p + q