Step |
Hyp |
Ref |
Expression |
1 |
|
nfra1 |
|
2 |
|
eqeq1 |
|
3 |
2
|
rexbidv |
|
4 |
3
|
2rexbidv |
|
5 |
4
|
cbvralvw |
|
6 |
|
6nn |
|
7 |
6
|
nnzi |
|
8 |
7
|
a1i |
|
9 |
|
evenz |
|
10 |
|
2z |
|
11 |
10
|
a1i |
|
12 |
9 11
|
zaddcld |
|
13 |
12
|
adantr |
|
14 |
|
4cn |
|
15 |
|
2cn |
|
16 |
|
4p2e6 |
|
17 |
16
|
eqcomi |
|
18 |
14 15 17
|
mvrraddi |
|
19 |
|
2p2e4 |
|
20 |
|
2evenALTV |
|
21 |
|
evenltle |
|
22 |
20 21
|
mp3an2 |
|
23 |
19 22
|
eqbrtrrid |
|
24 |
18 23
|
eqbrtrid |
|
25 |
|
6re |
|
26 |
25
|
a1i |
|
27 |
|
2re |
|
28 |
27
|
a1i |
|
29 |
9
|
zred |
|
30 |
26 28 29
|
3jca |
|
31 |
30
|
adantr |
|
32 |
|
lesubadd |
|
33 |
31 32
|
syl |
|
34 |
24 33
|
mpbid |
|
35 |
|
eluz2 |
|
36 |
8 13 34 35
|
syl3anbrc |
|
37 |
|
eqeq1 |
|
38 |
37
|
rexbidv |
|
39 |
38
|
2rexbidv |
|
40 |
39
|
rspcv |
|
41 |
36 40
|
syl |
|
42 |
5 41
|
syl5bi |
|
43 |
|
nfv |
|
44 |
|
nfre1 |
|
45 |
|
nfv |
|
46 |
|
nfcv |
|
47 |
|
nfre1 |
|
48 |
46 47
|
nfrex |
|
49 |
|
simplrl |
|
50 |
|
simplrr |
|
51 |
|
simpr |
|
52 |
49 50 51
|
3jca |
|
53 |
52
|
adantr |
|
54 |
|
simp-4l |
|
55 |
|
simpr |
|
56 |
|
mogoldbblem |
|
57 |
|
oveq1 |
|
58 |
57
|
eqeq2d |
|
59 |
|
oveq2 |
|
60 |
59
|
eqeq2d |
|
61 |
58 60
|
cbvrex2vw |
|
62 |
56 61
|
sylibr |
|
63 |
53 54 55 62
|
syl3anc |
|
64 |
63
|
rexlimdva2 |
|
65 |
64
|
expr |
|
66 |
45 48 65
|
rexlimd |
|
67 |
66
|
ex |
|
68 |
43 44 67
|
rexlimd |
|
69 |
42 68
|
syldc |
|
70 |
69
|
expd |
|
71 |
1 70
|
ralrimi |
|