| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfra1 |
|
| 2 |
|
eqeq1 |
|
| 3 |
2
|
rexbidv |
|
| 4 |
3
|
2rexbidv |
|
| 5 |
4
|
cbvralvw |
|
| 6 |
|
6nn |
|
| 7 |
6
|
nnzi |
|
| 8 |
7
|
a1i |
|
| 9 |
|
evenz |
|
| 10 |
|
2z |
|
| 11 |
10
|
a1i |
|
| 12 |
9 11
|
zaddcld |
|
| 13 |
12
|
adantr |
|
| 14 |
|
4cn |
|
| 15 |
|
2cn |
|
| 16 |
|
4p2e6 |
|
| 17 |
16
|
eqcomi |
|
| 18 |
14 15 17
|
mvrraddi |
|
| 19 |
|
2p2e4 |
|
| 20 |
|
2evenALTV |
|
| 21 |
|
evenltle |
|
| 22 |
20 21
|
mp3an2 |
|
| 23 |
19 22
|
eqbrtrrid |
|
| 24 |
18 23
|
eqbrtrid |
|
| 25 |
|
6re |
|
| 26 |
25
|
a1i |
|
| 27 |
|
2re |
|
| 28 |
27
|
a1i |
|
| 29 |
9
|
zred |
|
| 30 |
26 28 29
|
3jca |
|
| 31 |
30
|
adantr |
|
| 32 |
|
lesubadd |
|
| 33 |
31 32
|
syl |
|
| 34 |
24 33
|
mpbid |
|
| 35 |
|
eluz2 |
|
| 36 |
8 13 34 35
|
syl3anbrc |
|
| 37 |
|
eqeq1 |
|
| 38 |
37
|
rexbidv |
|
| 39 |
38
|
2rexbidv |
|
| 40 |
39
|
rspcv |
|
| 41 |
36 40
|
syl |
|
| 42 |
5 41
|
biimtrid |
|
| 43 |
|
nfv |
|
| 44 |
|
nfre1 |
|
| 45 |
|
nfv |
|
| 46 |
|
nfcv |
|
| 47 |
|
nfre1 |
|
| 48 |
46 47
|
nfrexw |
|
| 49 |
|
simplrl |
|
| 50 |
|
simplrr |
|
| 51 |
|
simpr |
|
| 52 |
49 50 51
|
3jca |
|
| 53 |
52
|
adantr |
|
| 54 |
|
simp-4l |
|
| 55 |
|
simpr |
|
| 56 |
|
mogoldbblem |
|
| 57 |
|
oveq1 |
|
| 58 |
57
|
eqeq2d |
|
| 59 |
|
oveq2 |
|
| 60 |
59
|
eqeq2d |
|
| 61 |
58 60
|
cbvrex2vw |
|
| 62 |
56 61
|
sylibr |
|
| 63 |
53 54 55 62
|
syl3anc |
|
| 64 |
63
|
rexlimdva2 |
|
| 65 |
64
|
expr |
|
| 66 |
45 48 65
|
rexlimd |
|
| 67 |
66
|
ex |
|
| 68 |
43 44 67
|
rexlimd |
|
| 69 |
42 68
|
syldc |
|
| 70 |
69
|
expd |
|
| 71 |
1 70
|
ralrimi |
|