Metamath Proof Explorer


Theorem moi

Description: Equality implied by "at most one". (Contributed by NM, 18-Feb-2006)

Ref Expression
Hypotheses moi.1 x = A φ ψ
moi.2 x = B φ χ
Assertion moi A C B D * x φ ψ χ A = B

Proof

Step Hyp Ref Expression
1 moi.1 x = A φ ψ
2 moi.2 x = B φ χ
3 1 2 mob A C B D * x φ ψ A = B χ
4 3 biimprd A C B D * x φ ψ χ A = B
5 4 3expia A C B D * x φ ψ χ A = B
6 5 impd A C B D * x φ ψ χ A = B
7 6 3impia A C B D * x φ ψ χ A = B