Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The universal class
moi
Next ⟩
morex
Metamath Proof Explorer
Ascii
Unicode
Theorem
moi
Description:
Equality implied by "at most one".
(Contributed by
NM
, 18-Feb-2006)
Ref
Expression
Hypotheses
moi.1
⊢
x
=
A
→
φ
↔
ψ
moi.2
⊢
x
=
B
→
φ
↔
χ
Assertion
moi
⊢
A
∈
C
∧
B
∈
D
∧
∃
*
x
φ
∧
ψ
∧
χ
→
A
=
B
Proof
Step
Hyp
Ref
Expression
1
moi.1
⊢
x
=
A
→
φ
↔
ψ
2
moi.2
⊢
x
=
B
→
φ
↔
χ
3
1
2
mob
⊢
A
∈
C
∧
B
∈
D
∧
∃
*
x
φ
∧
ψ
→
A
=
B
↔
χ
4
3
biimprd
⊢
A
∈
C
∧
B
∈
D
∧
∃
*
x
φ
∧
ψ
→
χ
→
A
=
B
5
4
3expia
⊢
A
∈
C
∧
B
∈
D
∧
∃
*
x
φ
→
ψ
→
χ
→
A
=
B
6
5
impd
⊢
A
∈
C
∧
B
∈
D
∧
∃
*
x
φ
→
ψ
∧
χ
→
A
=
B
7
6
3impia
⊢
A
∈
C
∧
B
∈
D
∧
∃
*
x
φ
∧
ψ
∧
χ
→
A
=
B