Metamath Proof Explorer


Theorem moi

Description: Equality implied by "at most one". (Contributed by NM, 18-Feb-2006)

Ref Expression
Hypotheses moi.1 x=Aφψ
moi.2 x=Bφχ
Assertion moi ACBD*xφψχA=B

Proof

Step Hyp Ref Expression
1 moi.1 x=Aφψ
2 moi.2 x=Bφχ
3 1 2 mob ACBD*xφψA=Bχ
4 3 biimprd ACBD*xφψχA=B
5 4 3expia ACBD*xφψχA=B
6 5 impd ACBD*xφψχA=B
7 6 3impia ACBD*xφψχA=B