Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The universal class
moi2
Next ⟩
mob
Metamath Proof Explorer
Ascii
Unicode
Theorem
moi2
Description:
Consequence of "at most one".
(Contributed by
NM
, 29-Jun-2008)
Ref
Expression
Hypothesis
moi2.1
⊢
x
=
A
→
φ
↔
ψ
Assertion
moi2
⊢
A
∈
B
∧
∃
*
x
φ
∧
φ
∧
ψ
→
x
=
A
Proof
Step
Hyp
Ref
Expression
1
moi2.1
⊢
x
=
A
→
φ
↔
ψ
2
1
mob2
⊢
A
∈
B
∧
∃
*
x
φ
∧
φ
→
x
=
A
↔
ψ
3
2
3expa
⊢
A
∈
B
∧
∃
*
x
φ
∧
φ
→
x
=
A
↔
ψ
4
3
biimprd
⊢
A
∈
B
∧
∃
*
x
φ
∧
φ
→
ψ
→
x
=
A
5
4
impr
⊢
A
∈
B
∧
∃
*
x
φ
∧
φ
∧
ψ
→
x
=
A