Metamath Proof Explorer


Theorem mon1pcl

Description: Monic polynomials are polynomials. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Hypotheses uc1pcl.p P = Poly 1 R
uc1pcl.b B = Base P
mon1pcl.m M = Monic 1p R
Assertion mon1pcl F M F B

Proof

Step Hyp Ref Expression
1 uc1pcl.p P = Poly 1 R
2 uc1pcl.b B = Base P
3 mon1pcl.m M = Monic 1p R
4 eqid 0 P = 0 P
5 eqid deg 1 R = deg 1 R
6 eqid 1 R = 1 R
7 1 2 4 5 3 6 ismon1p F M F B F 0 P coe 1 F deg 1 R F = 1 R
8 7 simp1bi F M F B