Metamath Proof Explorer


Theorem mon1puc1p

Description: Monic polynomials are unitic. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Hypotheses mon1puc1p.c C = Unic 1p R
mon1puc1p.m M = Monic 1p R
Assertion mon1puc1p R Ring X M X C

Proof

Step Hyp Ref Expression
1 mon1puc1p.c C = Unic 1p R
2 mon1puc1p.m M = Monic 1p R
3 eqid Poly 1 R = Poly 1 R
4 eqid Base Poly 1 R = Base Poly 1 R
5 3 4 2 mon1pcl X M X Base Poly 1 R
6 5 adantl R Ring X M X Base Poly 1 R
7 eqid 0 Poly 1 R = 0 Poly 1 R
8 3 7 2 mon1pn0 X M X 0 Poly 1 R
9 8 adantl R Ring X M X 0 Poly 1 R
10 eqid deg 1 R = deg 1 R
11 eqid 1 R = 1 R
12 10 11 2 mon1pldg X M coe 1 X deg 1 R X = 1 R
13 12 adantl R Ring X M coe 1 X deg 1 R X = 1 R
14 eqid Unit R = Unit R
15 14 11 1unit R Ring 1 R Unit R
16 15 adantr R Ring X M 1 R Unit R
17 13 16 eqeltrd R Ring X M coe 1 X deg 1 R X Unit R
18 3 4 7 10 1 14 isuc1p X C X Base Poly 1 R X 0 Poly 1 R coe 1 X deg 1 R X Unit R
19 6 9 17 18 syl3anbrc R Ring X M X C